p53 in the Anticancer Mechanism of Vitamin E

Joel Schwartz, Gerald Shklar and Diane Trickler

Immunohistochemical techniques were used to study the expression of "wild type" p53 and "mutant" p53 in experimental cancer inhibition by vitamin E. The cancer model used was the squamous cell carcinoma of hamster buccal pouch induced by the carcinogen 7,12 dimethylbenz(a)anthracene (DMBA). Cancer development was studied sequentially for 8-14 weeks and specimens prepared for histological and immunohistochemical interpretation. Primary antibodies used were monoclonal antibodies for "wild type" and "mutant" p53. Specificity of antibodies was confirmed by flow cytometry. Peroxidase-antiperoxidase staining was used on the tissue specimens. In those animals receiving vitamin E the buccal pouch tumour development was significantly inhibited and there was a notable expression of "wild type" p53. There was also a relative absence of "mutant" p53 in the buccal pouch lesions of animals receiving vitamin E. These observations suggest that vitamin E may inhibit cancer formation by stimulating the expression of a cancer suppressor gene.

Oral Oncol, Eur J Cancer, Vol. 29B, No. 4, pp. 313-318, 1993.

INTRODUCTION

p53 is a GENE that has received wide attention as a tumour suppressor gene [1]. It encodes a 53 kD protein that acts within the nucleus of cancer cells and appears to regulate the replication of DNA. This "wild type" of p53 may be converted by mutation to a "mutant type" of p53 that can act as an oncogene, possibly alone or together with other oncogenes. The mutant type of p53 is expressed in many different types of malignant tumours [2] including carcinomas of breast [3-6], lung [7-9], colon [10-12], stomach [13], oral mucous membrane [14, 15] and osteogenic sarcoma [16]. Differences have been found in p53 expression between primary cancers and their metastatic lesions. Yamada et al. [13] found no p53 mutations in 19 primary lesions of gastric cancer, but found p53 mutations in a number of metastatic lesions from gastric cancer, suggesting that the p53 gene mutations preferentially occur in the advanced stages of gastric cancer.

The possible roles of a number of oncogenes have been studied in oral cancer. c-erbB1 is over expressed in some human oral cancers and was found to be expressed in experimental oral cancer [17]. Increased expression of other oncogenes has also been reported in oral cancer, including Ki-ras [18] and Ha-ras [19] in experimental oral cancer and Ha-ras in human oral carcinomas [20]. Field and associates have indicated an increased expression of p53 in oral malignancies in patients who were heavy smokers [21]. Somers and associates have demonstrated p53 mutations to be the most common genetic alteration detected in head and neck cancers [22]. The cooperation of p53 with other oncogenes such as Ha-ras has been demonstrated [23].

p53 was first identified in 1979 as a host cell protein binding to the DNA virus, SV40 [24]. Early studies presented evidence that elevated levels of p53 could cooperate with other oncogenes to produce transformed cells [26]. Although initial studies conceived of p53 being an oncogene with dominant transforming capabilities, studies by Ben-David and associates found that inactivation of p53 could lead to transformation and that p53 appeared to act as a tumour-suppressor gene rather than a dominant transforming gene [27]. Further studies revealed that p53 has no ability to transform cells but mutant forms of p53 do possess this ability, often in cooperation with other well-known oncogenes. For activity as a tumour-suppressor gene, the natural or "wild type" of p53 must be present in substantial amounts so that it can over balance the expression of mutant forms [28, 29].

Vitamin E has a low toxicity [30] and potent anticancer action, first demonstrated in 1969 in experimental animals [30]. A significant inhibitory effect on oral cancer was demonstrated in the hamster pouch model by Shklar in 1982 with vitamin E administered orally [32].

The development of experimental oral carcinomas could also be retarded by the topical application of vitamin E on days alternate to the carcinogen application [33]. Using a less potent carcinogen it was possible to demonstrate that vitamin E could completely prevent the development of the carcinomas [34]. Vitamin E was also shown to be capable of regressing established carcinomas of hamster buccal pouch when injected close to the tumour site [35]. One aspect of the mechanism of vitamin E prevention and regression is an immunoenhancement [36], with the migration of cytotoxic lymphocytes and cytotoxic macrophages rich in tumour necrosis factor alpha to initial dysplastic lesions or tumour foci [37, 38]. Vitamin E, as a very potent antioxidant, is a well known trapper of free oxygen radicals. It has been found to protect cells from carcinogenic chemicals by inhibiting lipid peroxidation and its damaging free-radical-mediated consequences [39].

Correspondence to G. Shklar.

The authors are at the Department of Oral Medicine and Oral Pathology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, U.S.A.

Received 25 Nov. 1992; provisionally accepted 22 Dec. 1992; revised manuscript received 2 Feb. 1993.

Vitamin E and beta carotene have been found to be synergistic in their anticancer effect [40]. An explanation may be that while both these nutrients are antioxidants, they may function as antioxidants in a different, but complementary manner. Beta carotene functions as a very potent quenching agent of superoxide ion in a low partial pressure of oxygen. Alpha tocopherol is a very potent chain-breaking antioxidant at a high partial pressure of oxygen.

Several human studies have confirmed the animal studies with vitamin E as a anticancer agent. Menkes and associates [41], in a retrospective epidemiological study, found that low plasma levels of beta carotene and tocopherol bore a relationship to the subsequent development of lung cancer. Palan and associates [42] found an inverse relationship between plasma levels of beta carotene and alpha tocopherol and dysplasia and cancer of the uterine cervix.

Since vitamin E has a potent activity in cancer inhibition, and since the concept of cancer suppressor genes has been established, it was engaging to seek the mechanism of vitamin E's anticancer action in the stimulation of a cancer suppressor gene or inhibition of related oncogenes. An experiment was undertaken to study the anticancer activity of vitamin E, using the well-established and excellent hamster buccal pouch experimental model for epidermoid carcinoma [43–47] and the expression and location of p53 by standard immunohistochemical techniques, since antibodies to both "wild type" and "mutant" p53 are available. An experiment was carried out to demonstrate the possible role of p53 in the inhibition of experimental oral cancer by vitamin E.

MATERIALS AND METHODS

Methods

Eighty golden Syrian young adult male hamsters (*Mesocricetus auratus*) were divided into four equal groups of 20 animals:

Group 1-DMBA treated (tumour control).

Group 2—DMBA treated and vitamin E administered systemically by mouth.

Group 3—untreated control.

Group 4—vitamin E control.

Animals in groups 1 and 2 had the right buccal pouch painted three times per week with a 0.5% solution of 7,12 dimethylbenz(a)anthracene (DMBA) (Sigma Chemical Co.) in heavy mineral oil USP, using a number 4 sable brush. Each application consisted of 0.4 mg DMBA in 0.25 cc oil, as confirmed in previous studies by ¹⁴C labelling. The left buccal pouches remained untreated as an internal control for the DMBA application.

Animals in groups 2 and 4 had vitamin E acid succinate (Sigma Chemical Co.) administered orally by pipette three times weekly on days alternate to the DMBA application. The vitamin E was deposited into the animals' oropharynx by pipette in a dose of 10 mg three times per week and this

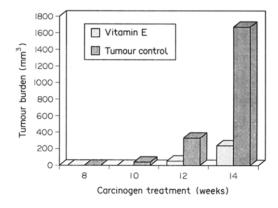
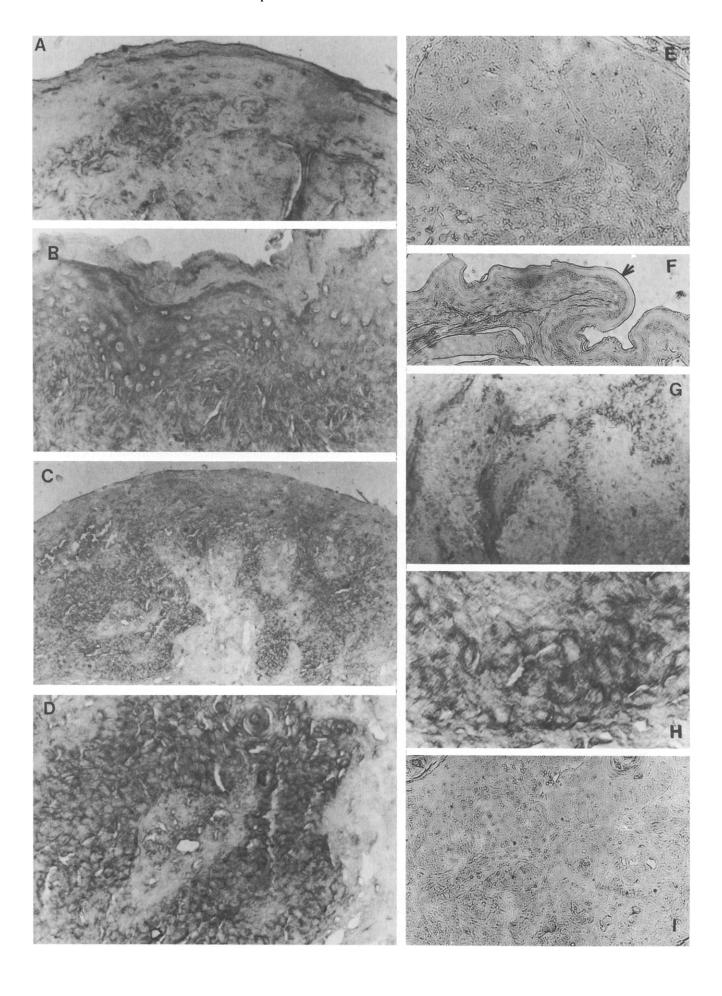


Fig. 1. Graphic illustration of tumour inhibition by vitamin E in hamster buccal pouch experimental cancer model.

technique resulted in very little vitamin E reaching the local pouch environment. Previous studies have confirmed this.

The hamsters (Lakeview Strain LVG) were obtained from Charles River Breeding Laboratories (Wilmington, Massachusetts) and were kept in a 12 h interval light-dark environment. The hamsters were fed a normal diet (Ralston Purina Chow No 5012) containing 22% protein and water ad libitum.


The right pouches were everted and examined weekly after 6 weeks. Five animals in each of the four groups were euthanised in a CO_2 chamber at 8, 10, 12 and 14 weeks. The buccal pouches were photographed, the tumours counted and measured, and leukoplakic areas scored. Figures were obtained for tumour burden (number of tumours $\times 4/3\pi r^3$ where r represents 1/2 average diameter of tumours) in each cheek pouch and statistical analysis was carried out comparing average tumour burden in tumour control group and vitamin E group. The pouches were excised, fixed in 10% formalin for 96 h, and sectioned in paraffin for histological and immunohistochemical studies. Cervical lymph nodes, salivary glands and major organs were also fixed in formalin for histological studies.

Animals were maintained in accordance with the guidelines of the Committee on Animals of the Harvard Medical School and with the guidelines of the Institute of Laboratory Animal Resources, National Research Council.

Immunohistochemical technique

The relative levels of protein expression (p53) were assessed following avidin-biotin, peroxidase-antiperoxidase immunohistochemical staining of the buccal pouch. The primary antibodies used were p53 monoclonal antibodies, PAb240 (mammalian mutant p53, recognises amino acid sequences 206-211) and PAb246 (rodent wild type recognises amino acid sequences 88-109) (Oncogene Science, Uniondale, New York). Controls and staining procedure: The specificity of

Fig. 2. (Facing page). Tissue sections of hamster buccal pouches obtained from animal groups used in the inhibition of oral carcinogenesis study are presented. The sections were stained immunohistochemically using an avidin-biotin peroxidase-antiperoxidase technique. The monoclonal antibodies allowed us to separate "wild type" from the "mutant" form of p53. (a) Normal hamster buccal pouch showing relative absence of p53 wild type expression, $(200\times)$. (b) Hyperplastic, dysplastic mucosa in animals receiving vitamin E demonstrating increased p53 wild type expression $(400\times)$. (c) Invasive epidermoid carcinoma in animals that received vitamin E treatment. High levels of p53 wild type expression was noted $(150\times)$. (d) High power view of c $(400\times)$.(e) Epidermoid carcinoma in tumour control animal showing absence of p53 wild type expression $(200\times)$. (f) Normal hamster buccal pouch showing absence of p53 mutant expression in the epithelium (arrow) $(80\times)$. (g) Epidermoid carcinoma in tumour control animal showing increased expression of mutant p53 $(150\times)$. (h) High power view of e $(400\times)$. (i) Epidermoid carcinoma in a animal receiving vitamin E showing a relative absence of mutant p53 $(150\times)$.

J. Schwartz et al.

Table 1. Table showing relative expression of "wild type" and "mutant" p53 in normal, tumour control and vitamin E animals

Wild type	Mutant
+	_
+	+++
++	_
+++	+
	+ + +

cach antibody was confirmed by flow cytometry, and the level of antibody recognition for p53 expressed in HCPC-1 cells was quantitated following in vitro treatment. Negative controls for the primary antibody binding was the elimination of the primary antibody, the incubation of the tissue with diluted mouse serum (1:300) and the use of an antibody with an identical isotype (mouse antihuman antibody). An immunoenzymatic staining kit was used to visualise the binding of the primary antibody in the tissue sections (DAKO-Quick Staining System 40, K686). Three sections per pouch were used for each staining procedure and blindly read by two oral pathologists. At least three areas of normal, dysplasia, or carcinoma in situ/invasive carcinoma were scored.

RESULTS

Gross findings

There was a significant inhibition of tumour development in the animals receiving vitamin E. The tumour inhibition could be observed at all stages after 8 weeks and was particularly notable at the end of the 14 week experiment (Fig. 1).

Immunohistochemistry

"Wild type" p53 was relatively absent in normal hamster buccal pouch mucosa (Fig. 2a). Its expression was found to increase in dysplastic mucosa in animals receiving vitamin E (Fig. 2b). There was a notable expression in invasive epidermoid carcinoma in animals treated with vitamin E. (Fig. 2c, d) with the staining prominently seen. Localisation of p53 appeared to be in nuclear membranes, in cytoplasm adjacent to nuclei and, to a lesser extent, in both cytoplasm and nuclei. Carcinomas in animals untreated with vitamin E did not stain for p53 "wild type" (Fig. 2f).

"Mutant" p53 was seen to have a strong expression in the carcinomas of the tumour control animals (Fig. 2g, 2h) but was relatively absent in the tumours of the animals receiving vitamin E (Fig. 2i). It was also absent in normal epithelium (Fig. 2f).

A summary of the overall immunohistochemical results is presented and indicates that vitamin E treated animals showed increased levels of wild type p53. The increase in wild type p53 was observed in normal, dysplastic and invasive oral carcinoma (Table 1).

DISCUSSION

In addition to stimulation of a variety of immune responses [26–38], vitamin E acts directly upon cancer cells to destroy them. Schwartz and Shklar [48] found a selective cytotoxic effect of both beta carotene and alpha tocopherol on human cancer cell lines in vitro, at relatively high concentration (>70 µmol/l). Seven different cell lines were studied (two oral carcinomas, two breast carcinomas, two lung carcinomas and one malignant melanoma). A consistent morphological change was shown in cancer cells after treatment with beta

carotene or vitamin E—a rounding of tumour cells and lifting off from the culture plate. There were also quantitative reductions in proliferations ([³H]thymidine) and succinic dehydrogenase activity (MTT Assay). In addition, there was a change in protein expression, specifically following β-carotene treatment, which produced an increased expression of heat shock protein 70, which has been related to p53 in numerous recent investigations [49–51].

At lower concentrations an increased differentiation has been noted to be induced by treatment with β -carotene or vitamin E. Specifically, β -carotene induced increased cell to cell communication and the increased expression of connexin-43 [52].

Both p53 and hsp 70 have characteristics in common. Both proteins are expressed at high levels in $G_1 \rightarrow S$ of the cell cycle, and are signals of a cellular "SOS" response to either exogenous or endogenous oxidative stress. The result of their enhanced expression was the development of apoptosis (programmed cell death) [53, 54]. Vitamin E could suppress tumour cell proliferation, resulting in the accumulation of the tumor cells in G_1 , followed by differentiation [48, 55], a process ascribed to the development of apoptosis [56].

A model for the function of p53 was proposed by Lane [57]. In normal cell division, p53 is not required. Normal cell response to DNA damage would involve a genome guarding function of p53. If this response is not successful, the overexpression or dysregulation of wild type (tumour suppressor form) p53 may be overexpressed. As demonstrated by Tuck and Crawford, the overexpression of the wild type p53 could initiate tumorgenic transformation [58]. The premalignant cell may attempt to stabilise the p53 complex through enhanced hsp 70 constitutive expression or viral oncoprotein expression [59, 60]. The completion of the transformation process may involve the induction of oxidants that promote instability and mutational damage to the DNA. The enhanced expression of mutant p53 may be a cellular response to dysregulated wild type gene expression by acting as a dominant negative regulator of the wild type p53. The gross manifestation of this cellular response, we suggest, would be the death of some malignant clones due to mitotic failure, while viable tumour clones will arise from the surviving genetically altered

Vitamin E, acting as a powerful inhibitor of cellular peroxidation and hydroxyl radical formation, could reduce the triggering of signal inductive pathways involving NF-kB [61]. The NF-kB signal system has been shown to be controlled through the level of cellular antioxidant activity [62]. Vitamin E treatment of cells has not only resulted in the reduction in reactive oxidants, but a marked reduction in transcription factor induction, such as N-myc [63], and an increased DNA repair [64] has been identified. Associated with an oxidative state change, there may also be the reduction in hsp or adenovirus E1A protein binding to mutant p53, resulting in the destabilisation of mutant p53, and mutant p53 protein-protein interactions, particularly with promotor gene regions, such as, hsp 70 [65]. The final result would be the reduction in mutant p53 with an enhanced expression for wild type p53.

Since "wild type" p53 is stimulated by vitamin E, and "mutant" p53 expression is diminished by vitamin E, it could be suggested that vitamin E exerts its anticancer effect by:

 stimulating a cancer repressor (cancer suppressor) gene to prevent the action of carcinogenic influences.

- Preventing the mutation of p53 to oncogenic forms by promoting DNA repair. This process may occur as vitamin E inhibits oxidant production.
- 3. Preventing the mutation of other protooncogenes that may function together with "mutant" p53.

An understanding of the basic mechanism of vitamin E anticancer activity may result in more effective agents to prevent and control cancer in humans. The effective control of cancer in humans by non-toxic agents is the major thrust and hope of this research. This is the first report showing that a non-toxic micronutrient, vitamin E was capable of modulating the activity of a cancer suppressor gene.

- 1. Cowell JK. The nuclear oncoproteins: RB and p53. Seminars Cancer Biol 1990, 1, 437-446.
- Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumor types. Nature (Lond.) 1989, 342, 705-708.
- 3. Prosser J, Thompson AM, Cranston G, Evans HJ. Evidence that p53 behaves as a tumor suppressor gene in sporadic breast tumors. *Oncogene* 1990, 5, 1573-1579.
- Cartoretti G, Rilke R, Andreola S, D'Amato L, Delia D. p53 expression in breast cancer. Int J Cancer 1988, 41, 178-183.
- Bartek J, Iggo R, Gannon J, Lane DP. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogenes 1990, 5, 893-899.
- Thompson AM, Steel CM, Cheety U, et al. p53 gene mRNA expression and chromosome 17p allele loss in breast cancer. Br J Cancer 1990, 61, 74-78.
- Takahashi T, Nau MM, Chiba I, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989, 246, 491-494.
- Iggo R, Gatter K, Bartek J, Lane D, Harris AL. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 1990, 335, 675-679.
- Chiba I, Takahashi T, Nau MM, et al. Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Oncogene 1990, 5, 1603-1610.
- Van den Berg FM, Tigges AJ, Schipper ME, den Hartog-Jager FC, Kroes WG, Walboomers JM. Expression of the nuclear oncogene p53 in colon tumors. *J Pathol* 1989, 157, 193-199.
- Rodrigues NR, Rowan A, Smith MRF, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sci USA 1990, 87, 7555-7559.
- Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletion and p53 gene mutation in colorectal tumors. Science 1989, 244, 217-221.
- Yamada Y, Yoshida T, Hayashi K, et al. p53 gene mutation in gastric cancer metastases and in gastric cancer cell lines derived from metastases. Cancer Res 1991, 51, 5800-5805.
- Langdon JD, Partridge M. Expression of the tumor suppression gene p53 in oral cancer. Br J Oral Maxillofac Surg 1992, 30, 214-220.
- Gusterson BA, Anbazhagan R, Warren W, et al. Expression of p53 in premalignant and malignant squamous epithelium. Oncogene 1991, 6, 1785-1790.
- Mausada H, Miller C, Koeffler HP, Battifora H, Cline M. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 1987, 84, 7716-7719.
- 17. Wong DTW, Biswas DK. Activation of c-erb B oncogene in the hamster cheek pouch during DMBA-induced carcinogenesis. Oncogene 1987, 2, 67-72.
- Wong DTW, Gertz R, Chow P, et al. Detection of Ki-ras mRNA in normal and chemically transformed hamster oral keratinocytes. Cancer Res 1989, 49, 4562-4567.
- Husain Z, Fei Y, Roy S, Solt DB, Polverini PJ, Biswas DK. Sequential expression and cooperative interaction of c-Ha-ras and c-erb B genes in in vivo chemical carcinogenesis. Proc Natl Acad Sci USA 1989, 86, 1264-1268.
- Saranath D, Panchal RG, Nair N, et al. Oncogene activation in squamous cell carcinoma of the oral cavity. Jpn Cancer Res 1989, 80, 430.
- Field JK, Spandidos DA, Malliri A, Gosney JR, Yiagnisis M, Stell PM. Elevated p53 expression correlates with a history of

- heavy smoking in squamous cell carcinoma of the head and neck. Br J Cancer 1991, 64, 573-578.
- 22. Somers KD, Merrick MA, Lopez ME, Incognito LS, Schechter GL, Casey G. Frequent p53 mutations in head and neck cancer. Cancer Res 1992, 52, 5997-6000.
- 23. Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 1989, 63, 739-746.
- Lane DP, Crawford LV. T-Antigen is bound to a host protein in SV40 transformed cells. Nature 1979, 278, 261-263.
- Jenkins JR, Rudge K, Currie GA. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 1984, 312, 651-654.
- Parada LF, Land H, Weinberg Ra, Wolf D, Rotter V. Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation. Nature 1984, 312, 649-651.
- Ben-David Y, Prideaux VR, Chow V, Benchimol S, Bernstein A. Inactivation of the p53 oncogene by internal deletion or retroviral intergration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 1988, 3, 179-185.
- Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oran M. Widetype p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 1989, 86, 8763-8767.
- 29. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989, 57, 1083-1093.
- Bendich A, Machlin LJ, Safety of oral intake of vitamin E. Am J Clin Nutr 1988, 48, 612-619.
- 31. Harman D. Dimethylbenzanthracene-induced cancer. Inhibiting effect of dietary vitamin E. Clin Res 1969, 17, 125-129.
- 32. Shklar G. Inhibition of oral mucosal carcinogenesis by vitamin E. J. Natl Cancer Inst 1982, 68, 791-779.
- 33. Odukoya O, Hawach F, Shklar G. Retardation of experimental oral cancer by topical vitamin E. Nutr Cancer 1984, 6, 98-104.
- Trickler D, Shklar G. Prevention by vitamin E of oral carcinogenesis. J Natl Cancer Inst 1987, 78, 165-169.
- Shklar G. Schwartz J, Trickler DP, Niukian K. Regression by vitamin E of experimental oral cancer. J Natl Cancer Inst 1987, 78, 987-992.
- Shklar G, Schwartz J, Trickler DP, Reid S. Prevention of experimental cancer and immunostimulation by vitamin E. (Immunosurveillance). J Oral Pathol Med 1990, 19, 60-64.
- Shklar G, Schwartz J. Tumor necrosis factor in experimental cancer: regression with alpha tocopherol, beta carotene and algae extract. Eur J Cancer Clin Oncol 1988, 24, 839–850.
- 38. Schwartz J, Okukoya O, Stoufi E, Shklar G. Alpha tocopherol alters the distribution of Langerhans cells in DMBA treated hamster cheek pouch epithelium. J Dent Res 1985, 64, 117-121.
- Borek C. Vitamin E as an anticarcinogen. Ann NY Acad Sci 1990, 570, 417-420.
- Shklar G, Schwartz J, Trickler D, Reid S. Regression of experimental cancer by oral administration of combined alpha tocopherol and beta carotene. *Nutr Cancer* 1989, 12, 321-325.
- 41. Menkes MS, Comstock GW, Vuilleumier JP, et al. Serum beta carotene, vitamins E and A, selenium and the risk of lung cancer. N Engl 7 Med 1986, 315, 1250-1254.
- Palan PR, Mikhail MS, Basu J, Romney SL. Plasma levels of antioxidants β-carotene and α-tocopherol in uterine cervix dysplasia and cancer. Nutr Cancer 1991, 15, 13-30.
- 43. Salley JJ. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. *J Dent Res* 1954, 33, 253-258.
- 44. Morris AL. Factors influencing experimental carcinogenesis in the hamster cheek pouch. *J Dent Res* 1961, 40, 3-10.
- Silberman S, Shklar G. The effect of a carcinogen (DMBA) applied to the hamster's buccal pouch in combination with croton oil. Oral Surg 1963, 16, 1344-1355.
- Santis H, Shklar G, Chauncey H. The histochemistry of experimentally induced leukoplakia and carcinoma of the hamster buccal pouch. Oral Surg 1964, 17, 207-218.
- 47. Shklar G. Experimental oral pathology in the Syrian hamster. Prog Exp Tumor Res 1972, 16, 518-538.
- Schwartz JL, Shklar G. Selective cytotoxicity activity of carotenoids and alpha tocopherol on human carcinoma cells. J Oral Maxillofac Surg 1992, 50, 367-373.
- 49. Finlay CA, Hinds PW, Tan TH, et al. Activating mutations for transforming by p53 produce a gene product that forms an hsp 70-p53 complex with an altered half life. Mol Cell Biol 1988, 8, 531-539.

- Struzbecher HW, Addision C, Jenkins JR. Characterization of mutant p53-hsp72/73 protein-protein complexes by transient expression in monkey COS cells. Mol Cell Biol 1988, 8, 3740-3747.
- 51. Lehman TA, Bennett WP, Metcalf RA, et al. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res 1991, 51, 4090-4096.
- Zhang LX, Cooney RV, Bertram JS. Carotenoids up-regulate connexin-43 gene expression independent of their protein A or antioxidant properties. *Cancer Res* 1992, 52, 5707-5712.
- 53. Lotem J, Sachs L. Regulation by bcl-2, c-myc and p53 of susceptibility to induction of apoptosis by heat shock and cancer cheomtherapy compounds in differentiation-competent and defective myeloid leukemic cells. Cell Growth Differentiation 1993, 4, 41-47.
- Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild type-p53 induces apoptosis of myeloid leukemic cells that is inhibited by interleukin 6. Nature (Lond) 1991, 352, 345-347.
- 55. Shklar G, Schwartz J. Oral cancer inhibition by micronutrients. The experimental basis for clinical trials. *Oral Oncol Eur J Cancer* 1993, 29B, 9-16.
- Sen S, D'Incalci M. Biochemical events and relevance to cancer chemotherapy. Apoptosis. Fed Eur Biol Soc 1992, 307, 122-127.
- 57. Lane DP. p53 guardian of the genome. Nature 1992, 358, 15-16.

- Tuck SP, Crawford L. Overexpression of normal human p53 in established fibroblasts leads to their tumorigenic conversion. Oncogene Res 1989, 4, 81-96.
- Rubendran SK, Haroun RI, Clos J, Wisniewski J, Wu C. Regulation of heat shock factor primer formation: role of a conserved leucine zipper. Science 1993, 259, 230-234.
- Wu BJ, Morimoto RI. Transcription of the human hsp 70 gene is induced by serum stimulation. *Proc Natl Acad Sci USA* 1985, 82, 6070-6074.
- Staal FJT, Roederer M, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kB and transcription of human immunodeficiency virus. *Proc Natl Acad Sci USA* 1990, 87, 9943-9947.
- Yodoi J, Uchiyama T. Diseases associated with HTLV-1 virus, IL-2 receptor dysregulation and redox regulation. *Immunol Today* 1992, 13, 405-410.
- 63. Cohrs RJ, Torelli S, Prasad KM, Edwards-Prasad J, Sharma OK. Effect of vitamin E succinate and cAMP-stimulating agent on the expression of c-myc, N-myc, and H-ras in murine neuroblastoma cells. Intl J Dev Neurosci 1991, 9, 187-194.
- 64. Lin X, Sugiyama M, Costa M. Differences in the effect of vitamin E on nickel sulfide or nickel chloride-induced chromosomal aberrations in mammalian cells. *Mutat Res* 1991, 260, 159-164.
- Agoff SM, Hou J, Linzer DIH, Wu B. Regulation of the human hsp 70 promoter by p53. Science 1993, 259, 84-87.